Biểu diễn chuỗi Căn_bậc_hai_của_2

Hệ thức cos π/4 = sin π/4 = 1/√2, cùng với các biểu diễn tích vô hạn của sin và cosin cho ta

1 2 = ∏ k = 0 ∞ ( 1 − 1 ( 4 k + 2 ) 2 ) = ( 1 − 1 4 ) ( 1 − 1 36 ) ( 1 − 1 100 ) ⋯ {\displaystyle {\frac {1}{\sqrt {2}}}=\prod _{k=0}^{\infty }\left(1-{\frac {1}{(4k+2)^{2}}}\right)=\left(1-{\frac {1}{4}}\right)\left(1-{\frac {1}{36}}\right)\left(1-{\frac {1}{100}}\right)\cdots }

2 = ∏ k = 0 ∞ ( 4 k + 2 ) 2 ( 4 k + 1 ) ( 4 k + 3 ) = ( 2 ⋅ 2 1 ⋅ 3 ) ( 6 ⋅ 6 5 ⋅ 7 ) ( 10 ⋅ 10 9 ⋅ 11 ) ( 14 ⋅ 14 13 ⋅ 15 ) ⋯ {\displaystyle {\sqrt {2}}=\prod _{k=0}^{\infty }{\frac {(4k+2)^{2}}{(4k+1)(4k+3)}}=\left({\frac {2\cdot 2}{1\cdot 3}}\right)\left({\frac {6\cdot 6}{5\cdot 7}}\right)\left({\frac {10\cdot 10}{9\cdot 11}}\right)\left({\frac {14\cdot 14}{13\cdot 15}}\right)\cdots }

hoặc tương đương,

2 = ∏ k = 0 ∞ ( 1 + 1 4 k + 1 ) ( 1 − 1 4 k + 3 ) = ( 1 + 1 1 ) ( 1 − 1 3 ) ( 1 + 1 5 ) ( 1 − 1 7 ) ⋯ . {\displaystyle {\sqrt {2}}=\prod _{k=0}^{\infty }\left(1+{\frac {1}{4k+1}}\right)\left(1-{\frac {1}{4k+3}}\right)=\left(1+{\frac {1}{1}}\right)\left(1-{\frac {1}{3}}\right)\left(1+{\frac {1}{5}}\right)\left(1-{\frac {1}{7}}\right)\cdots .}

Ngoài ra ta có thể dùng chuỗi Taylor của các hàm lượng giác. Ví dụ, chuỗi Taylor cho cos π/4 cho ta

1 2 = ∑ k = 0 ∞ ( − 1 ) k ( π 4 ) 2 k ( 2 k ) ! . {\displaystyle {\frac {1}{\sqrt {2}}}=\sum _{k=0}^{\infty }{\frac {(-1)^{k}\left({\frac {\pi }{4}}\right)^{2k}}{(2k)!}}.}

Chuỗi Taylor cho √1 + x với x = 1 cùng với giai thừa kép n!! cho ta

2 = ∑ k = 0 ∞ ( − 1 ) k + 1 ( 2 k − 3 ) ! ! ( 2 k ) ! ! = 1 + 1 2 − 1 2 ⋅ 4 + 1 ⋅ 3 2 ⋅ 4 ⋅ 6 − 1 ⋅ 3 ⋅ 5 2 ⋅ 4 ⋅ 6 ⋅ 8 + ⋯ . {\displaystyle {\sqrt {2}}=\sum _{k=0}^{\infty }(-1)^{k+1}{\frac {(2k-3)!!}{(2k)!!}}=1+{\frac {1}{2}}-{\frac {1}{2\cdot 4}}+{\frac {1\cdot 3}{2\cdot 4\cdot 6}}-{\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6\cdot 8}}+\cdots .}

Sử dụng biến đổi Euler để đẩy nhanh tốc độ hội tụ của dãy, ta được

2 = ∑ k = 0 ∞ ( 2 k + 1 ) ! 2 3 k + 1 ( k ! ) 2 = 1 2 + 3 8 + 15 64 + 35 256 + 315 4096 + 693 16384 + ⋯ . {\displaystyle {\sqrt {2}}=\sum _{k=0}^{\infty }{\frac {(2k+1)!}{2^{3k+1}(k!)^{2}}}={\frac {1}{2}}+{\frac {3}{8}}+{\frac {15}{64}}+{\frac {35}{256}}+{\frac {315}{4096}}+{\frac {693}{16384}}+\cdots .}

Một công thức dạng BBP cho √2 vẫn chưa được tìm ra, tuy nhiên đã có những công thức dạng BBP cho π√2 và √2ln(1+√2).[20]

√2 có thể biểu diễn bằng phân số Ai Cập, với mẫu số bằng các số hạng thứ 2n của một dãy hồi quy tuyến tính giống dãy Fibonacci. Đặt a0 = 0, a1 = 6, an = 34an − 1 − an − 2[21]

2 = 3 2 − 1 2 ∑ n = 0 ∞ 1 a 2 n = 3 2 − 1 2 ( 1 6 + 1 204 + 1 235416 + … ) {\displaystyle {\sqrt {2}}={\frac {3}{2}}-{\frac {1}{2}}\sum _{n=0}^{\infty }{\frac {1}{a_{2^{n}}}}={\frac {3}{2}}-{\frac {1}{2}}\left({\frac {1}{6}}+{\frac {1}{204}}+{\frac {1}{235416}}+\dots \right)}

Tài liệu tham khảo

WikiPedia: Căn_bậc_hai_của_2 http://www.math.ubc.ca/~cass/Euclid/ybc/ybc.html http://www.jdawiseman.com/papers/easymath/surds_si... http://www.numberphile.com/videos/root2.html http://mathworld.wolfram.com/PythagorassConstant.h... http://www.math.cornell.edu/~dwh/papers/sulba/sulb... http://adsabs.harvard.edu/abs/2011arXiv1110.5456U http://it.stlawu.edu/~dmelvill/mesomath/tablets/YB... http://jwilson.coe.uga.edu/emt669/student.folders/... http://catalogue.bnf.fr/ark:/12148/cb15504722x http://data.bnf.fr/ark:/12148/cb15504722x